ТРАНСПОРТНЫЕ ХАРАКТЕРИСТИКИ ТВЕРДЫХ РАСТВОРОВ ДИОКСИДА ЦИРКОНИЯ ЛЕГИРОВАННЫХ ОКСИДАМИ ИТТРИЯ, СКАНДИЯ, ИТТЕРБИЯ, ГАДОЛИНИЯ.

Ломонова Е.Е.

Институт общей физики им. А.М. Прохорова РАН, 119991, г. Москва, ул. Вавилова, 38, Россия

Устройство ТОТЭ

- 1 Водород из топлива
- 2,4 электроды
- 3 Электролит
- 5 Кислород из воздуха

 $O_0^{x} \rightarrow 1/2O_2 + V_0^{\bullet \bullet} + 2e^-$ (Катод)

 $H_2 + O^{2-} → H_2O+2e^-$ (Анод)

- Планарная структура ТОТЭ:
- 1,2 топливо (водород)
- 3 электрический ток
- 4 межкомпонентное соединение
- 5 анод; 6 –мембрана; 7 катод; 8 –

воздух

9 – межкомпонентное соединение

10 — анод

Основные требования к материалу, используемому в качестве твердого электролита

- Высокая ионная проводимость (σ₀> 10⁻² См*см⁻¹) и стабильность характеристик в течение длительного времени при рабочих температурах;
- Химическая и механическая совместимость с электродами, чтобы избежать формирования блокирующих фаз интерфейса и минимизировать межфазные сопротивления;
- Технологичность изготовления механически прочных и плотных мембрана с малой толщиной и большой площадью или изделий сложной формы, обеспечивающая стабильность характеристик материала и невысокую себестоимость;

Керамические материалы на основе

диоксида циркония.

- Практически не ограничено изготовление изделий по форме и размерам;
- Широкий диапазон технологических приемов изготовления.
- Возможность организации промышленного производства на имеющихся предприятиях;
- На электрофизические характеристики и стабильность керамики в условиях эксплуатации оказывают влияние множество факторов, связанных с особенностями микроструктуры (размеры зерен, неоднородность распределения компонентов по границам зерен и в их объеме), что в свою очередь зависит от технологии (исходные материалы и методы и режимы синтеза)

Монокристаллы на основе диоксида

циркония.

не содержат границ зерен и их электропроводность зависит только от исходного состава и условий кристаллизации, в том числе от скоростей роста и охлаждения слитка кристаллов;

 быстрый синтез в расплаве из исходных оксидов, не требующий промежуточных предварительных этапов, на которых возможно загрязнение исходных материалов.
 Дополнительная очистка от примесей в процессе кристаллизации;

высокая технологичность, наличие установок, позволяющих в одном технологическом цикле получать до нескольких сот килограмм монокристаллов в течение 24-28 часов;

 ограничения по размерам и форме, требуется механическая обработка

Метод направленной кристаллизации в холодном контейнере с использованием прямого высокочастотного нагрева

а - стартовое плавление; b - гомогенизация
 расплава; с - процесс роста кристаллов;
 d - полная кристаллизация объема расплава

1 - стенки холодного контейнера; 2 - индуктор; 3 - расплав; 4 - охлаждаемое дно; 5 - гарниссаж; 6 - изолирующее кольцо

Установка «Кристалл-407» *Электрическая мощность - 60 кВт *Частота электромагнитного поля -5.28 МГц *Диаметр холодного тигля - 130 мм *Масса расплава – 4 -6 кг *Рабочая атмосфера воздух,

Метод направленной кристаллизация в холодном контейнере с использованием прямого высокочастотного нагрева

- 1 стенка холодного контейнера;
- 2 дно холодного контейнера;
- 3 скрепляющее кольцо;
- 4 теплоизолирующий слой на дне контейнера;
- 5 слой бумаги;
- 6,7 медные обечайки (после загрузки извлекаются);
- 8-металл;
- 9 порошкообразная шихта;
- 10 кристаллические обходы;
- 11 индуктор

Установка «Кристалл-403М»

Электрическая мощность -160 кВт
Частота электромагнитного поля -1,76МГц
Диаметр холодного тигля - 700 мм
Масса расплава –600-700 кг
Рабочая атмосфера воздух,

Влияние на электропроводность твердых растворов на основе диоксида циркония оказывают следующие факторы:

- Вид стабилизирующего оксида, что связано с ионным радиусом катиона и особенностями их электронной конфигурации;
- Концентрация стабилизирующего оксида в твердом растворе, определяющая его фазовый состав;
- Локальная структура твердого раствора, определяющая положение компенсирующих кислородных вакансий относительно ионов Zr⁴⁺ и катионов стабилизирующей примеси (Y³⁺, Sc³⁺, R³⁺).

а-кубическая модификация: структурный тип флюорита, пространственная группа Fm3m, КЧ_{Zr4+}=8; КЧ_{O2-}=4;

б-тетрагональная модификация: структурный тип Hgl₂ , пространственная группа P4₂/nmc, K4_{Zr4+}=8; K4_{O2-}=4;

С-моноклинная модификация: структурный тип бадделеит, пространственная группа $P2_1/c$, КЧ_{2r4+}=7; КЧ₀₂₋=3;4;

Стабилизация кубического ZrO_2 оксидом иттрия R_2O_3

 $\textbf{R_2O_3} \rightarrow \textbf{2R'}_{Zr}\textbf{+}\textbf{3O^x}_{O}\textbf{+}\textbf{V^{\bullet}}_{O}$

Составы и обозначения выращенных кристаллов ZrO2, стабилизированного оксидами иттрия, скандия, иттербия и гадолиния

	Состав	Обозна чение	Состав	Обозн ачение				
(ZrO ₂) _{0.92} (Yb ₂ O ₃) _{0.08}		8YbSZ	(ZrO ₂) _{0.92} (Y ₂ O ₃) _{0.08}	8YSZ Ион		Конфигура ция	КЧ по	Ионный
	(ZrO ₂) _{0.91} (Yb ₂ O ₃) _{0.09}	9YbSZ	$(ZrO_2)_{0.91}(Y_2O_3)_{0.09}$	9YSZ		внешних электронов	02-	радиус
	(ZrO ₂) _{0.9} (Yb ₂ O ₃) _{0.1}	10YbSZ	(ZrO ₂) _{0.9} (Y ₂ O ₃) _{0.1}	10YSZ	Zr ⁴⁺	4d ² 5s ²	8	0,84
	(ZrO ₂) _{0.89} (Yb ₂ O ₃) _{0.11}	11YbSZ	(ZrO ₂) _{0.89} (Y ₂ O ₃) _{0.11}	11YSZ	Sc ³⁺	3d ¹ 4s ²	8	0,87
	(ZrO ₂) _{0.88} (Yb ₂ O ₃) _{0.12}	12YbSZ	(ZrO ₂) _{0.88} (Y ₂ O ₃) _{0.12}	12YSZ	Yb ³⁺	4f ¹⁴ 6s ²	8	0,985
	Состав	Обознач	Состав	Обозна	Y ³⁺	4d ¹ 5s ²	8	1,019
	Cocrab	ение	cocrab	чение	Gd ³⁺	4f ⁷ 5d ¹ 6s ²	8	1,053
(2	ZrO ₂) _{0.92} (Gd ₂ O ₃) _{0.08}	8GdSZ	$(ZrO_2)_{0.92}(Sc_2O_3)_{0.08}$	8YbSZ				
(2	ZrO ₂) _{0.91} (Gd ₂ O ₃) _{0.09}	9GdSZ	$(ZrO_2)_{0.91}(Sc_2O_3)_{0.09}$	9YbSZ				
(ZrO ₂) _{0.9} (Gd ₂ O ₃) _{0.1}		10GdSZ	(ZrO ₂) _{0.9} (Sc ₂ O ₃) _{0.1}	10YbSZ				
$(ZrO_2)_{0.89}(Gd_2O_3)_{0.11}$		11GdSZ	$(ZrO_2)_{0.89}(Sc_2O_3)_{0.11}$	11YbSZ				
(ZrO ₂) _{0.88} (Gd ₂ O ₃) _{0.12}		12GdSZ	$(ZrO_2)_{0.88}(Sc_2O_3)_{0.12}$	12YbSZ				8

Фазовый анализ кристаллов ZrO₂-Yb₂O₃

Образец	Фазовый состав*		Пространственная	Параметры решетки,Å 🗆				
	кристаллы	порошки	группа симметрии					
	ZrO ₂ -Yb ₂ O ₃							
8YbSZ c c		Fm3m	$a = 5.129 \pm 0.001$					
9YbSZ c c		Fm3m	$a = 5.131 \pm 0.001$					
10YbSZ	с	с	Fm3m	$a = 5.133 \pm 0.001$				
11YbSZ	l1YbSZ c c		Fm3m	$a = 5.135 \pm 0.001$				

9

Фазовый анализ кристаллов ZrO₂-Y₂O₃

Образец	Фазовый состав*		Пространственная	Параметры решетки,Å□					
	кристаллы	порошки	группа симметрии						
	ZrO ₂ -Y ₂ O ₃								
8YSZ c c		Fm3m	$a = 5.138 \pm 0.001$						
		t	P4 ₂ /nmc	$a = 3.6331 \pm 0.02$					
				$c = 5.143 \pm 0.002$					
9YSZ	с	С	Fm3m	$a = 5.141 \pm 0.001$					
10 YSZ	с	С	Fm3m	$a = 5.144 \pm 0.001$					
11 YSZ	с	С	Fm3m	$a = 5.147 \pm 0.001$					
12 YSZ	с	С	Fm3m	$a = 5.149 \pm 0.001$					

Фазовый анализ кристаллов ZrO₂-Gd₂O₃

Образец	Фазовый состав*		Пространственная	Параметры решетки,Å 🗆						
	кристаллы	порошки	группа симметрии							
	ZrO ₂ -Gd ₂ O ₃									
8GdSZ c		С	Fm3m	a =5.149± 0.001						
	t t		P4 ₂ /nmc	$a = 3.641 \pm 0.002$						
				$c = 5.155 \pm 0.002$						
9GdSZ	с	С	Fm3m	$a = 5.155 \pm 0.001$						
t		P4 ₂ /nmc	$a = 3.645 \pm 0.002$							
				$c = 5.160 \pm 0.002$						
10GdSZ	с	С	Fm3m	$a = 5.159 \pm 0.001$						
11GdSZ	c	С	Fm3m	$a = 5.163 \pm 0.001$						
12GdSZ	Z c c		Fm3m	$a = 5.167 \pm 0.001$						

Фазовый анализ кристаллов ZrO₂-Sc₂O₃

Образец	Фазовый состав*		Пространственная	Параметры решетки,Å 🗆					
	кристаллы	порошки	группа симметрии						
	ZrO ₂ -Gd ₂ O ₃								
8ScSZ	8ScSZ t t		P4 ₂ /nmc	a=3,596(1) c=5,123(1)					
9ScSZ	t	t	P4 ₂ /nmc	a=3,595(1) c=5,122(1)					
10ScSZ	с	с	Fm3m	a=5,103(1)					
r r		R3m	a=3,565(1) c=9,015(1)						
11ScSZ c c		Fm3m	a=5,094(1)						
	r	r	R3m	a=3,560(1) c=9,030(1)					
12ScSZ	r	r	R3m	a=3,560(1) c=9,030(1)					

Методы определения фазового состава в кристаллах RSZ

t'- тетрагональная модификация P4₂/nmc: htensity, a.u. существует смещения C кислорода $\uparrow \downarrow c > b = a$ $\beta = 90^{\circ}$ 2.2 22 -00 Raman shift, cm 8Yb0,1EuSZ t"- тетрагональная ntensity, a.u. 0,3 модификация $P4_2$ /nmc *c* = *a* 0.2 *b* = *a b* = *90*° смещения кислорода ↑↓ Raman shift, 1/cm очень мало [111 9Yb0,1EuSZ 1,0 Intensity, a.u. с-кубичесая модификация Fm3m $c = b = a \ \theta = 90^{\circ}$ 0.5 смещения кислорода ↑ 🤳 нет 0,0 200 400 600 800 Raman shift. 1/cm

Локальная структуры кристаллов

На положение анионных вакансий относительно катионов в решетке влияют как кулоновское взаимодействие противоположно заряженных гетеровалентных катионов и кислородных вакансий, так и упругие напряжения, которые возникают в решетке при введении катионов с ионными радиусами

отличными от радиуса катионов основы Zr⁴⁺.

Тип центра	λ,нм	Описание центра				
I	Катион R ³⁺ , который имеет одну кислородную вакансию в первой координационной сфере. Координационное число КЧ _{R3+} =7 Точечная симметрия центра - тригональная (C _{3v}).					
II 586.6 Кислородная вакансия в первой координационной сф 587.3 отсутствуют, но присутствуют во второй. Координацио 606 число КЧ _{R3+} =8. Точечная симметрия центра - С ₁ .						
IV	590.8	Кислородные вакансии расположены в дальних координационных сферах R ³⁺ KЧ _{R3+} =8. Точечная симметрия наиболее высокая по сравнению с оптическими центрами I и II				
		В спектре люминесценции кристаллов (10-12)ScSZ наряду с линиями оптических центров I, II, IV присутствуют линии ионов Eu ³⁺ , расположенных в центрах 6-вершинников, наличие которых характерно для ромбоэдрической фазы.				

Локальная структура твердых растворов ScSZ

800

ЛОКАЛЬНАЯ СТРУКТУРА

1.Кислородные вакансии в кристаллах ZrO₂-R₂O₃ (R-Gd, Y, Yb)

преимущественно занимают вторую координационную сферу по отношению к ионам R³⁺ и первую координационную сферу по отношению к ионам Zr⁴⁺.

2. С увеличением ионного радиуса эта вероятность увеличивается.

3.В твердых растворах ZrO₂-Sc₂O₃ для кислородной вакансии существует одинаковая вероятность занять первую и вторую координационные сферы по отношению к ионам Zr⁴⁺ и Sc³⁺.

4. С увеличением концентрации R₂O₃ изменяется соотношение типов центров. Для ZrO₂-Sc₂O₃ изменения происходят в узком диапазоне концентраций.

Изучение локальной структуры твердых растворов на основе диоксида циркония с различными стабилизирующими оксидами спектральным методом подтверждает результаты, полученные как экспериментальными методами по рассеянию нейтронов, EXAFS, так и методами компьютерного моделирования структуры твердых растворов.

Исследованиям положения кислородных вакансий в твердых растворах на основе диоксида циркония уделяется много внимания из-за его влияния на подвижность кислорода, которая определяет ионную проводимость данных материалов

Ионная проводимость кристаллов

Температурные зависимости проводимости кристаллов ZrO₂-R₂O₃

Электропроводность кристаллов ZrO₂-R₂O₃ при температуре 1173К

Зависимость потенциального барьера для перемещения иона кислорода в позицию вакансии при взаимодействии с парами катионов, которые находятся в окружении кислорода или кислородной вакансии. КЧ₀₂₋=4;

Ребро тетраэдра	Zr ⁴⁺ - Zr ⁴⁺	Sc ³⁺ -Zr ⁴⁺	Sc ³⁺ -Sc ³⁺	Y ³⁺ -Zr ⁴⁺	Υ ³⁺ -Υ ³⁺
Е _{а,} эВ	0.30	0.64	0.98	0.85	2.04

СРАВНЕНИЕ СТРУКТУРЫ И ТРАНСПОРТНЫХ ХАРАКТЕРИСТИК МОНОКРИСТАЛЛИЧЕСКОГО И КЕРАМИЧЕСКОГО ТВЕРДОГО ЭЛЕКТРОЛИТА СОСТАВА 9Sc0,1EuSZ.

 ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ ${}^{1}\Pi$ ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ ${}^{9}Y0,1EuSZ \text{ single crystals}$ ${}^{9}Y0,1EuSZ \text{ ceramics}$ ${}^{1}\Pi$ ${}^{1}\Pi$

ЭЛЕКТРОПРОВОДНОСТЬ КЕРАМИЧЕСКОГО ТВЕРДОГО ЭЛЕКТРОЛИТА СОСТАВА 9Sc0,1EuSZ.

Общая проводимость керамики в диапазоне температур 600-700К (1*10⁻⁵ -1*10⁻⁴ S/cm) ниже, чем проводимость монокристаллов (1,5*10⁻⁵ -1,4*10⁻⁴ S/cm) Проводимость границ зерен при температурах измерения от 575 до 690К в ~10³ ниже электропроводности зерна

При 1173К удельная электропроводность монокристалла 0,076S/cm, для керамики 0,065 S/cm.

СПАСИБО ЗА ВНИМАНИЕ